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ABSTRACT 

R a n d o m  n o n - H e r m i t i a n  Jacobi ma t r i ces  Jn of increas ing  d imens ion  n are 

considered.  We prove t ha t  the  normal ized  eigenvalue count ing  m e a s u r e  of 

Jn converges weakly to a l imi t ing m e a s u r e  # as n -+ ~ .  We also ex tend  

to the  non -Hermi t i an  case the  Thou le s s  fo rmula  re la t ing ~ and  the  Lya- 

punov  exponen t  of  the  second-order  difference equa t ion  associa ted  wi th  

the  sequence  Jn. T h e  measu re  # is shown to be log-H51der cont inuous .  

Our  proofs  make  use  of (i) t he  theory  of p roduc t s  of r a n d o m  mat r i ces  in 

the  form first offered by H. Furs t enberg  and  H. Kes t en  in 1960 [8], and  

(ii) some  potent ia l  theory  a rgumen t s .  

1. In troduct ion  

Let a j ,  bj, and cj be three given sequences of complex numbers. Consider the 

second-order difference equation for f 

(1.1) a j f j - 1  + bj f j  + c j f j+l  = z f j ,  j = 1 , 2 , . . . .  
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This equation can be also written as 

(1.2) ~fy+l~ ( f j )  ( z - b j - a ~ )  \ ] j J = g J  fj-1 ' j = 1 ' 2 ' '  whereg = ci c d . 

Denote by f j (z)  the solution of (1.1) satisfying the initial condition ]0 = 0, 

f l  = 1. In terms of the transfer matrix Sn(z) = gn " . . .  " gl, 

(1.3) \~'fn+l(z)~=fn(Z) ] Sn(z)(10)" 

Obviously, J:n+l (Z) is a polynomial in z of degree n, 

(1.4) ]~+l(Z) = kn I I ( z  - z~), kn = 1/cj. 
/--1 j=l 

Its roots z l , . . . ,  z~ are the eigenvalues of the tridiagonal (Jacobi) matrix 

(1.5) J ,  = 

bl C1 ) 
a: b2 c2 

*.. ".. ".. 
an-1 bn-1 Cn-1 

an bn 

In this paper we are concerned with the limiting distribution of the eigenvalues 

of Jn as n --+ c~ for random aj, b j, and cj. 
If all bj are real and cj = a~+ 1 for all j ,  the matrices Jn are Hermitian. The 

eigenvalue distribution of such matrices was studied extensively in the past in the 

context of the Anderson model; see, e.g., [19, 3]. In this case, the eigenvalues are 

always real and there are several ways to prove that  the normalized eigenvalue 

counting measure of Jn converges to a limiting measure as n -~ c~. None of these 

proofs works in the non-Hermitian case and little is known about the limiting 

eigenvalue distribution of random non-Hermitian Jacobi matrices; however, see 

[5, 15]. 

Our interest in such matrices is partly motivated by non-Hermitian quantum 

mechanics of Hatano and Nelson [13, 14] which, in one dimension, leads to 

equation (1.1) with the coefficients aj, by, and cj chosen randomly from the 

special class defined by the restrictions 

(1.6) bj �9 ll~ and a* /Cj > 0 for all j. j+l 
In this class the Liouville substitution 1 reduces equation (1.1) to the symmetric 

[]Ik-1 a* lc ~1/2 1 fj =OjCj, whereOl=landOk=~l i j=l  j+1/ JJ fork>_2. 
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equation 

(1.7) 8~_1r "1- bjff2j --~ 8j•j=l --= zCj 

where sj = cj(a~+l/Cj)U2. However, the situation here is much richer than in 

the Hermitian case as the choice of boundary conditions to accompany equation 

(1.1) has a profound effect on the spectrum of the associated Jacobi matrix. If 

the Dirichlet boundary conditions, f0 = 0 and fn+l = 0, are chosen then the 

corresponding Jacobi matrix is Jn (1.5). Since the Dirichlet boundary condi- 

tions are preserved by the Liouville transformation, the spectrum of Jn is real 

provided the coefficients (aj, bj, cj) belong to the Hatano-Nelson class (1.6). On 

the other hand, if one imposes the periodic boundary conditions, fo = fn  and 

f l  = fn+l,  then the spectrum of the corresponding Jacobi matrix turns out to 

be complex. This is not surprising, of course, as the Liouville substitution trans- 

forms the periodic boundary conditions for f into highly asymmetric boundary 

conditions for r What  is surprising, however, is that  in the limit n -+ c~ the 

complex eigenvalues lie on analytic curves [10] and are regularly spaced even 

if the coefficients in equation (1.1) are chosen randomly [11]. These effects are 

specific to the Hatano-Nelson class and the proofs and analysis of the limiting 

eigenvalue distribution given in [10, 11] exploit the relation between equations 

(1.1) and (1.7). Of course, in the general case of arbitrary coefficients no such 

relation exists and one requires a different approach in order to investigate the 

eigenvalue distribution of Jn. We develop such an approach in the present paper. 

Throughout this paper we assume that: 
�9 O O  A1. {(aj,  bj, c3)}j=l is a sequence of i.i.d, random vectors. 

A2.  For some 5 > 0, E[lajl ~ + lajl -~ + Ibjl ~ + Icjl ~ + Icjl -~] < co. 

A3. The support of the probability distribution of the random vector (al, bl, cl) 

contains at least two different points (a, b, c) and (a', b', c'). 
If all mass of the probability distribution of (a j ,  bj, cj) is concentrated at one 

point (a, b, c), then of course we have a tridiagonal matrix with constant diago- 

nals. This is a particular case of TSplitz matrices. The eigenvalue distribution 

of non-Hermitian T6plitz matrices was extensively studied in the past; see, e.g., 
survey [22]. 

Our main result expresses the limiting distribution of the eigenvalues of Jn in 

terms of the (upper) Lyapunov exponent 

7(z) = lim 1 n--+~ "~ l~ (Z)12 + If~(z)l~] 
of equation (1.1). It is well known that  (for every complex z) the above limit 

exists with probability one and is nonrandom. This follows from Oseledec's 
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multiplicative ergodic theorem [18]. A more subtle fact is that  in our case ?(z) 

can be calculated using the well known Furstenberg formula [7], and moreover, 

(1.8) 7(z) = lim 1Elog[lS~(z)[[,  z e C. 
n----~ oo n 

The function 7(z) is subharmonic in the entire complex plane [4] and bounded 

from below, 

1 
(1.9) ?(z) _> -~Eloglal/cl l  for all z. 

n This inequality easily follows from det Sn(z)  = IIj=l aj /cj .  The subharmonicity 

implies that  AT, where A is the distributional Laplacian in variables Re z and 

Imz,  defines a measure on C; see, e.g., [17]. Our main result is as follows. 

THEOREM 1.1: Let #n be the normalized eigenvalue counting measure of jn,  
1 i.e., #n = n ~ = 1  5z,, where Z l , . . . ,  zn are the eigenvalues of Jn. Then: 

(a) With probability one, #n converges weakly to # = 2--~A7 as n -4 ce. 

(b) (Thouless formula) For every z E C, 

(1.10) ?(z) = f c  log [w - zld#(w ) - E log Icl I. 

(c) The limiting eigenvalue counting measure # is log-H51der continuous. 

More precisely, for any Bzo,5 = {z : [z - Zo[ < 5}, 0 < 5 < 1, 

(1.11) #(Bz0,~) ~ - -  

where C(zo, 5) ~ 0 as 5 ~ O. 

C(z0, 5) 
1 ' log 

We deduce Theorem 1.1 from Theorem 1.2 which is of independent interest 

in the context of second order difference equations. 

THEOREM 1.2: With probability one, 

(1.12) lira 1 log Ifn+l(z)l = ?(z) 
n---~ oo n 

for a/most all z with respect to Lebesgue measure on C. 

In the real case, i.e., when the sequences aj, bj and cj are real and the 

spectral parameter z is real, Theorem 1.2 can be deduced from the Law of 

Large Numbers for the coefficients of the product of random matrices which 

was proved in [12]. Our proof of Theorem 1.2 is different from the one given in 
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[12]. It is well adapted to our (complex valued) case, very short and makes our 

paper self-contained. 

In the Hermitian case, (1.12) and the Thouless formula (1.10) follow directly 

from the fact that  #~ converges weakly to a limiting measure # [1, 6] and the 

latter can be established without use of products of random matrices and by 

more elementary means. We would like to emphasize that  in the non-Hermitian 

case we follow the opposite direction route: the weak convergence of #~ and 

the Thouless formula are deduced from (1.12). To this end we make use of the 

relation 
1 

(1.13) #n -- 2~nA log If~+l l, 

where the equality is to be understood in the sense of distribution theory. Rela- 

tion (1.13) is well known in function theory. It holds for an arbitrary polynomial 

of degree n and can be easily derived with the help of the Gauss-Green formula. 

In this general setup it was shown by Widom [21, 22] that  if the measures #n 

for all n are supported inside a bounded region and in the limit n -4 c~ the 

function p~(z) = fc  log Iz - wldp~(w) converges to a limiting function p(z) al- 

most everywhere in the complex plane, then #n converges weakly to # = 2A~Ap. 

We shall need the following simple extension of this result to the case when the 

supports of #~ are not necessarily bounded. 

Let An be a (deterministic) sequence of square matrices of increasing 

dimension n, and 

1 log [ det(An - zIn)[ = f c l o g  Iw - z]dtt~(w), p (z) = 

a A where I.n is the n x n identity matrix and Pn = ~ Pn is the normalized 

eigenvalue counting measure of A~. Define 

(1.14) 7R ---- l imsup f loglwldltn(w), R > _ I .  
n--+oo "] lwl > R 

PaOPOSITION 1.3: Assume that there is a function p: C -4 [ - ~ ,  + ~ )  such 

that pn(z) -4 p(z) as n -4 cc almost everywhere in C. I f  7-1 < +c~ then it 

follows that p is locally integrable, # = ~ A p  is a unit mass measure, 

(1.15) f log [wldtt(w ) < 7-1 < "~-00, 
JIw I>1 

and the sequence of  measures #n converges weakly to p as n -4 ~ .  If, in 

addition, l i m R ~  7R = 0 then we also have that 

(1.16) p(z) = f log ]w - z tdp(w ). 
Jc 
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Remark: In view of (1.15), the integral on the RHS in (1.16) is a locally inte- 

grable function of z taking values in [-CO, +ec).  

For the sake of completeness, we give a proof of this Proposition in 

Appendix A. 

In order to estimate the tails of eigenvalue distributions as required in the 

above Proposition 1.3, we use the following inequalities2: 

1 
(1.17) T1 _< lim sup ~nn logdet(I~ + AnA*),  

n---i* oo 

and for any R > 1 and 6 > 0, 

1 1 
lim sup ~ tr logl+~(In + AnA*).  (1.18) rR < ~ ~ 2 n 

These inequalities can be derived with the help of Weyl's Majorant Theorem; 

for details of the derivation, see Appendix B. 

Let us now return to the random Jacobi matrices J~. Straightforward but 

tedious calculations show 3 that  

n 

ltrlogl+~bq + &J~) _< -~ }-'~logl+~(1 +/~lvjl~), where vj  = (aj,bj,cj), 
n n j = l  

for some c~, ~ > 0 independent of v j ' s  and n. Therefore, if the random sequence 

vj  is stationary and 

(1.19) Elogl+~[1 + Iv~l 2] < CO for some ~ > 0, 

then the Ergodic Theorem asserts that  with probability one the limits in (1.17), 

(1.18) are finite which implies T1 < CO and l i m R - ~  T R : 0, as required in 

Proposition 1.3. The assumptions of stationarity and (1.19) are less restrictive 

than assumptions A1-A3. However, we are only able to prove Theorem 1.2 

(which is the main ingredient in our proof of Theorem 1.1) under these more 

restrictive assumptions. 

A * 2 Note that logdet(In + AnA*) = trlog(In + ~A~). 

3 For any Hermitian matrix H = IIHj~llj~,k=~ we have H _< D = diag(dl,. . .  ,d,~) 
with dj = ~'~=1 IHjkl, J = 1, . . . ,n .  Therefore, if f is a nondecreasing func- 
tion then, by the Courant-Fisher minimax principle, t r log / (H)  < tr f (D) = 
E~\~/(d~). 
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2. P r o d u c t s  of  r a n d o m  m a t r i c e s  

Our proof of Theorem 1.2 makes use of several facts from the theory of products 

of random 2 x 2 matrices. We list these facts below (Propositions 2.1-2.3). 

Let u be a probability distribution on the group GI(2, C) of invertible complex 

2 x 2 matrices and gk be an infinite sequence of independent samples from this 

distribution. 

As before, Sn = gn ' . . . ' g l  for n = 1, 2 , . . . .  By P(C e) we denote the projective 

space on which every non-degenerate matrix g acts in a natural way. Let ~ be 

a probability measure on P(C e). We say that  g preserves ~ if ~(g- l .B)  = t~(B) 

for any Borel set B (here g.x is the result of the action of g on x E P(C 2 )). By 

G,  we denote the closure of the subgroup of G/(2, C) generated by all matrices 

belonging to the support of u. We say that  G~ preserves t~ if ~ is preserved by 

every g E G, .  

PROPOSITION 2.1: Let ~n) ~ .~n) be the singular values Of Sn. I f  

(2.1) Elog  Ilgll and Elogl  detg  I are both finite, 

then with probability one the following limits 

(2.2) lim -1 logan,) _- 7j, J -- 1,2, 
n-+oo 

exist and are nonrandom. 

The limiting values 71 and 72 are called the Lyapunov exponents of the 
sequence S~. 

PROPOSITION 2.2: If, in addition to condition (2.1), no measure a is preserved 

by G, ,  then the Lyapunov exponents of the sequence Sn are distinct, i.e., 

71 >72.  

PROPOSITION 2.3: I f  condition (2.1) is satisfied and no measure ~ is preserved 

by G~, then: 

(i) For any unit vector x the probability is one that 

(2.3) lim -1 log [ISnxl[ = 71. 
n-+oo n 

(ii) I f  in addition E(][gl[ ~ + ][g-X[l~ ) < oc for some 6 > O, then for any positive 

there is a constant p(r > 0 such that uniformly in x, [[x[[ --- 1, 

(2.4) Prob([ log [[Snx[[ - rt71 [ ~ ~n[) ~ e -np(~). 
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Remarks: 1. As all norms in C a are equivalent, the choice of norm in (2.3) 

and (2.4) is not important. However, it is convenient to deal with the standard 

Euclidian norm. 

2. Propositions 2.1-2.3 are well known in the classical case of the real matrices; 

see, e.g., [18, 2] for proofs of Propositions 2.1 and 2.3 and [7, 20] for proofs of 

Proposition 2.2. For complex matrices, Propositions 2.1 and 2.3 are proved in 

the same way as in [18, 2]. However, the proof of Proposition 2.2 is somewhat 

different from that  given in [7, 20]. We shall now discuss the necessary changes 

which would allow the interested reader to reconstruct the proof in question 

simply by examining the one in [20]. Namely, the main ingredient of this proof 

is the fact that  the mapping g ~ Tg, where 

(Tgf)(x) = f (g- lx ) l lg- lx l l  -'~/2, 

defines a unitary representation of the group SL(m, ~) in Hilbert space 

Le(,Sm,dl) with dl being the natural Lebesgue measure on the unit sphere 

S m � 9  ~m. (Obviously, we are interested in the case when m = 2.) 

In the case of the complex space the representation is defined by 

(Tgf)(x) = f(g-lx) llg-lxl[-m, 

in Hilbert space L2(S.~,dl) with dl being again the natural Lebesgue measure 

on the unit sphere S.~ �9 C m . After that  the proof proceeds in the way suggested 

in [20]. 

3. P r o o f s  of  T h e o r e m s  1.1 a n d  1.2 

In order to be able to apply Propositions 2.1-2.3, we have to verify that  under 

assumptions A1-A3 our matrices gj defined in (1.2) satisfy the conditions of 

these Propositions. 

It is apparent that  assumption A2 guarantees that  condition (2.1) is satisfied 

and E(IMI ~ + IIg-lll ~) < oo. It remains to check that  assumption A3 implies 

that  no measure a is preserved by G,  (here ~ is the measure induced on the 

group of matrices by the distribution of (al, bl, cl)). To this end we note that  if 

o) g = [ and g~ = c' c' 
1 0 

then 

z=b (z-b')a 
g g ' - l = ( o  1 a'c ) a n d  g'-lg=(Za, b,_l(zcba,)c' 0 ) .  
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It  remains to check tha t  for almost all z the group G generated by the matrices 

g, g' is rich enough in the sense that  no measure is preserved by all matrices 

of this group. The main idea is as follows. For a "typical" z we construct two 

matrices, say B and D, from G such that  the eigenvalues of B are of different 

moduli. I t  is easy to see then tha t  the only measure preserved by all matrices 

of the form B n, - ~  < n < c~ is the one supported by the lines in P ( C  z) 

generated by the eigenvectors of B. The matr ix  D E G is then chosen so that  

its action on P ( C  2 ) does not preserve these lines, which means that  the measure 

in question does not exist. We would like to emphasize that  the presence of the 

parameter  z plays a crucial role in this situation. 

More precisely, if z is such that  

2 arg(z - b) r arg(ac), 

then the matr ix  g has eigenvalues with different moduli. In other words, the 

moduli are different if z does not belong to a certain half line. The g' then plays 

the role of D (once again when z lies outside of certain curves). This s ta tement  

can be checked by direct calculation and is sufficient for our purposes. 

However, in some important  cases much more precise s tatements  can be made. 

In particular,  if c'a/a~c = 1 then each of tr iangular matrices (gg,-1) and g , - lg  

is non-trivial for all but maybe two values of z and a similar idea applies; see 

[2] page 213. 

Now we are in a position to apply Propositions 2.1-2.3. For any two non-zero 

vectors x and y, define 

/ 
I(x,y)l 2 d(x,y)  = ~]1 (x,x)(y,y)' V 

where (.,-) is the scalar product  in C 2. The function d(x ,y)  is the natural  

angular distance between x and y on the projective space P ( C  2 ). 

The following Lemma is the key element in the proof of Theorem 1.2. (In this 

Lemma and thereafter the abbreviation a.s. refers to the probabili ty measure, 

i.e., any equality with the letters a.s. above it holds with probabili ty one.) 

LEMMA 3.1: Suppose that the conditions of Propositions 2.1-2.3 are satisfied. 

I f  Yn is a sequence of random unit vectors in C 2 such that 

(3 .1)  IIS.  ll = where  as -+  oo, 

then for any fixed unit vector x and any 6 > 0 there b a constant r(x, 5) > 0 

such that 

(3.2) Prob{d(x,  yn) < e -nS} < e -nr(x'~) 
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for all su~cient ly  large n. 

Proof: For any n, one can always find two orthogonal unit vectors un and Vn 
such that  S~Snun = A~ n) and S~Snv~ = ),~). In view of Proposition 2.1, 

I t !  i l a . S .  
' = o (n )  []SnUn[ I ---- e n'yl+e~ and [[S~vnl[ = e ~2+~n, where en, 

Obviously, the sequence v,~ satisfies condition (3.1) and we first prove the large 

deviation estimate (3.2) for this sequence. 

Let x be a fixed unit vector. Then x = (x, un)un + (x, Vn)Vn for every n, and, 

since I(x, un)] = d(x, vn) and [(x, vn)l <_ 1, we have that  

[IS~xll <_ d(x, Vn)l[S~u~[[ + llSnv~ll. 

Therefore, if d(x, Vn) <_ e -n~ then 

log IISnx[[ <_ n71 + log(e -~+r  + e -'~('r1-~2)+r 

and hence with probability one, 

log llSnx]] - n71 <_ - n  min(5, 3'1 - ~/2) + o(n). 

It follows now from Proposition 2.3 that  

(3.3) Prob{d(x, vn) < e -n~} < e -~r(z'6) 

for some r(x,  8) and all n > no, where no depends on the matrices Sn, and also 

on x and <~. 

Now, let Yn be an arbitrary sequence of random unit vectors satisfying con- 

dition (3.1), and let yn J- be a sequence of unit vectors orthogonal to y~, i.e., 

(Yn,Y~) -~ 0 for all n. Obviously, d(un,y~) = [(Un,Yn)[ and, since S~Snu~ = 
e2n'n+2e'~Un, we have that  with probability one, 

d(un, yin ) -- e-2n'r'+~ SnYn)[ <_ e -n('n-'r~)+~ 

It is then apparent that  d(vn,Yn) is also exponentially small for large n and 

therefore the large deviation estimate (3.2) for y~ follows from (3.3). | 

Proof  of  Theorem 1.2: Let 

(o) 
x = a n d  = \ ] ,  = 1 , 2 , . . . .  
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Then 

and therefore 

[ f n - k l ( Z ) l  2 _ I f n q - l ( Z ) l  2 

d (x, yn) = I/ +l(z)l 2 + I fn (z ) l  2 ]Iu ]I 2 

1 1 
(3.4) -1 log l fn+l  (Z) I = - log d(x ,  yn)  + - log Ily~ll. 

n n n 

In view of (1.3) and Proposition 2.3(i), 

(3.5) lim 1 log ]]yn]]a'-s'71(z), 
n--+ oo I t  

where "~(z) is the upper Lyapunov exponent of the sequence of transfer matrices 

S ~ ( z ) .  On the other hand, S n  l ( z ) y ~  = (1,0) T, and therefore 

lim 1 log I IS ; I (Z)Ynl l  a.=s. _ "/l(Z). 
n-- n IlYnll 

It follows now from Lemma 3.1 (applied to the matrices S n l ( z )  and the vectors 

x and  yn/I lynl l  4) and the Borel-Cantelli Lemma that  

lim l l o g d ( x ,  "a's'0 Yn) = �9 
n--+oo It 

Therefore, in view of (3.4) and (3.5), for any fixed z the probability is one that  

(3.6) lim 1 log ]fn+l(z)]  = 7 l ( z ) .  
n--+oo rt  

But then the probability is one that  (3.6) holds almost everywhere in the 

complex plane. This follows from the Fubini Theorem. Our proof of 

Theorem 1.2 is complete. 

P r o o f  of Theorem 1.1: As explained in the Introduction, under assumptions 

A1-A3, the probability is one that  7"1 ___~ C for some non-random C < +co and 

limR-+oo 7R = 0. Therefore, parts (a) and (b) of Theorem 1.1 follow immediately 

from Theorem 1.2 by the way of Proposition 1.3. 

The log-HSlder continuity of # is a corollary of the Thouless formula and the 

fact that  the Lyapunov exponent "y(z) is bounded from below. This is done very 

much in the same way as in the Hermitian case; see [4]. The stronger property 

of H61der continuity of # is well known in the Hermitian case (see [3] for detailed 

4 If "Yl and "y2 are the Lyapunov exponents of a sequence Sn, then the sequence 
S~ -1 has the Lyapunov exponents -~/2 and -'y1. 
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discussion) but it is not our intention to go that  far in the non-Hermitian case 

in this short communication. 

To prove (1.11), we first note that  the integral fr log Iw - zldIt(w ) converges 

absolutely for every z. Indeed, it follows from (1.15) that  

f w  log Iw - zldIt(w ) < +co, 
-zr>l  

and this inequality together with the Thouless formula and the lower bound 

(1.9) imply that  

flw l log ]w - zltdIt(w ) < +co 
-zl<l 

as well. Therefore, 

(3.7) C(z ,6) := fw_zl<_ I l o g l w - z l l d i t ( w ) ~ O  a s S ~ 0 .  

Obviously, for 5 < 1, 

It( Bz,  ) 
C(z, 5) = -z,<5 l~ - zl)dIt(w) > log(1/5------~' 

and part (c) of Theorem 1.1 follows. Our proof of Theorem 1.1 is now complete. 

A .  A p p e n d i x  

Proof of Proposition 1.3: The local integrability of log [z[ and the condition 

7"1 < + ~  imply that  the functions pn(z) are uniformly integrable on bounded 

sets in C. It follows from this that  p(z) is locally integrable and Pn -+ P as 

n --+ co in D'(C), the space of Schwartz distributions in C. Since A is con- 

tinuous on distributions, we also have that  Apn --+ Ap in D'(C). Obviously 

Ap _> 0, hence Ap is defined by a measure; see, e.g., [16]. As any sequence of 

measures converging as distributions must converge weakly, we conclude that  

#n = 1 A P n  ~ I t = zJ-y AP weakly as measures. 

For any R > 1, 

~ ,  dItn(w) < l----1---- fl w log,w,d#n(w). 
i_>n - log IRI i_>l 

Therefore the inequality 7x < +co implies that  the sequence of measures It~ is 

tight, and hence cannot lose mass. As each of Pn has unit mass, so has the 

limiting measure p. 



Vol. 148, 2005 RANDOM NON-HERMITIAN JACOBI MATRICES 343 

It follows from the weak convergence of Pn to # and (1.14) that  

[ loglwld#(w ) <_ lim f loglwld#n(w ) < T1 
,/1 <1~1<_ R ,~--+oo J1 <_I~,I<2R 

for any R > 1. This implies (1.15). Similarly, if l i m R - ~  VR = 0 then 

(A.1) lim f log[w[d#(w) = O. 
R--+~ j [w[>_R 

It remains to prove relation (1.16). It will suffice to show that  

(A.2) Pn "-+ fC log IW --'ldp(w) in D'(C) 

when n -~ oo. Let ~p(z) be a continuous function with bounded support. Then 

fcPn(Z)~(z)d2z= fcg(w)d#n(w) 

with 

g(w) =/c  ~(z) log Iw - zld2z. 

The function g is continuous and g(w) = O(log Iwl) when Iwl --+ c~. Assume 

now that  l i m R - ~  ~-R ---- 0. Then 

lim limsup f I9(w)ld#~(w) = O, R--+c~ n--+~ J[wl>_R 

and 
t ~  

lim / [9(w)]dp(w) = 0 
R--+~ J[w[>_R 

because of (A.1). It now follows from the weak convergence of #n to # that  

lim / g(w)dpn(w) = fc g(w)d#(w). 
n--.4.oo ~ C 

Therefore 

libra~176 fc pn(z)~(z)d2z: /c g(w)d#(w) : fc { /cl~ r 

and (A.2) follows. 
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B. A p p e n d i x  

Derivation of inequalities (1.17) and (1.18): Let z l , . . . , z n  and 81, . . . ,8  n 
be respectively the eigenvalues and singular values of An labeled so that  

[Zxl _> [z2[ _> . . .  _> [zn[ and Sl _> s2 _> . . .  _> sn. Weyl's Majorant Theorem, see 
[9], page 39, asserts that  

m m 

Z F(Izjl) _< Z F(sj), m = 1 , 2 ,  
j = l  j=l 

for any function F(t) (0 _< t < c~) such that F(e x) is convex on It. Obviously, 
the function log 1+5 (t) satisfies this requirement for 5 _> 0, and therefore 

w 1 E 1~ IzJl <- 1 E l~ [zj[ 
log 1+6 [w[d#n (w) = n [z~ [>_1 [z i I>1 i>1 n 

1 m 
-< E l~ sj 

n 
j = l  

where m is the number of eigenvalues of An such that  [zj[ _> 1. Obviously, 

m m n 

E l o g s j  = 1 ~"~ (2 )  < 1 E l o g l + 5 ( l + s ~  ) 2,+5 
j : l  j----1 j----1 

_ 1 trlogl+~(iu +AuAn) ,  21+5 

and therefore 

fwl_> l 1 
log 1+~ [w[d#n(W) <_ 21----+--~n trlogl+5(In + AnAl),  5 >_ O, 

which implies (1.17) and (1.18). 
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