ISRAEL JOURNAL OF MATHEMATICS 148 (2005), 331-346

THE THOULESS FORMULA FOR
RANDOM NON-HERMITIAN JACOBI MATRICES

BY
ILyA YA. GOLDSHEID

School of Mathematical Sciences, Queen Mary, University of London
London E1 4NS, U.K.
e-mail: I.Goldsheid@gmul.ac.uk

AND
BORIS A. KHORUZHENKO

School of Mathematical Sciences, Queen Mary, University of London
London E1 4NS, U.K.
and
Department of Mathematical Sciences, Brunel University
London UB8 3PH, U.K.
e-mail: B.Khoruzhenko@ qmul.ac.uk

ABSTRACT

Random non-Hermitian Jacobi matrices Jn of increasing dimension n are
considered. We prove that the normalized eigenvalue counting measure of
Jn converges weakly to a limiting measure p as n — co. We also extend
to the non-Hermitian case the Thouless formula relating u and the Lya-
punov exponent of the second-order difference equation associated with
the sequence J,. The measure u is shown to be log-Hélder continuous.
Our proofs make use of (i) the theory of products of random matrices in
the form first offered by H. Furstenberg and H. Kesten in 1960 (8], and
(ii) some potential theory arguments.

1. Introduction

Let ay, b;, and c; be three given sequences of complex numbers. Consider the
second-order difference equation for f

(1.1) a;fi1+bifi+cifimi=2f, j=12,....
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This equation can be also written as

- - R
(1.2) (f]fjl):gj(fﬁ)’ i=12,..., wheregj=( 9 cd>

Denote by f;(z) the solution of (1.1) satisfying the initial condition fo = 0,

f1 = 1. In terms of the transfer matrix S,(z) =g ... g1,
fn+1(z)> (1>

1.3 = Sp{(z .

() i) =sa(s
Obviously, f,+1(2) is a polynomial in z of degree n,

(1.9) fr@ =k ][~ =), kn= ][] /e

=1 j=1
Its roots z1, ..., z,, are the eigenvalues of the tridiagonal (Jacobi) matrix
b1 Cy

as b2 Co
(1.5) Jn =
Gn-1 bp-1 Cn-1
Gn bn
In this paper we are concerned with the limiting distribution of the eigenvalues
of J, as n = oo for random q;, b;, and c;.

If all b; are real and c; = a},, for all j, the matrices J, are Hermitian. The
eigenvalue distribution of such matrices was studied extensively in the past in the
context of the Anderson model; see, e.g., [19, 3]. In this case, the eigenvalues are
always real and there are several ways to prove that the normalized eigenvalue
counting measure of J,, converges to a limiting measure as n — co. None of these
proofs works in the non-Hermitian case and little is known about the limiting
eigenvalue distribution of random non-Hermitian Jacobi matrices; however, see
[5, 15].

Our interest in such matrices is partly motivated by non-Hermitian quantum
mechanics of Hatano and Nelson {13, 14] which, in one dimension, leads to
equation (1.1) with the coefficients a;, b;, and ¢; chosen randomly from the
special class defined by the restrictions

(1.6) bj € R and aj;/c; >0 forallj.

In this class the Liouville substitution! reduces equation (1.1) to the symmetric

1 f; = 8;v;, where 6; = 1 and 6; = (]"[;”;11 ajy1/ci)/? for k > 2.
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equation
(1.7) S;_1¢j_1 + bj’lﬁ]‘ + 8j¢j=1 = 2;

where 5; = ¢;(a},,/c;)'/?. However, the situation here is much richer than in
the Hermitian case as the choice of boundary conditions to accompany equation
(1.1) has a profound effect on the spectrum of the associated Jacobi matrix. If
the Dirichlet boundary conditions, fo = 0 and f,41 = 0, are chosen then the
corresponding Jacobi matrix is J, (1.5). Since the Dirichlet boundary condi-
tions are preserved by the Liouville transformation, the spectrum of J,, is real
provided the coefficients (a;, b;, ¢;) belong to the Hatano-Nelson class (1.6). On
the other hand, if one imposes the periodic boundary conditions, fo = f, and
fi = fay1, then the spectrum of the corresponding Jacobi matrix turns out to
be complex. This is not surprising, of course, as the Liouville substitution trans-
forms the periodic boundary conditions for f into highly asymmetric boundary
conditions for 1. What is surprising, however, is that in the limit n — oo the
complex eigenvalues lie on analytic curves [10] and are regularly spaced even
if the coefficients in equation (1.1) are chosen randomly [11]. These effects are
specific to the Hatano-Nelson class and the proofs and analysis of the limiting
eigenvalue distribution given in [10, 11] exploit the relation between equations
(1.1) and (1.7). Of course, in the general case of arbitrary coefficients no such
relation exists and one requires a different approach in order to investigate the
eigenvalue distribution of J,. We develop such an approach in the present paper.

Throughout this paper we assume that:

Al. {(aj,bj,¢;)}32, is a sequence of i.i.d. random vectors.

A2. For some § > 0, Ella;|° + |aj] ™ + |b;]° + |¢;]° + |¢;]79] < .

A3. The support of the probability distribution of the random vector (a;, by, ¢;)
contains at least two different points (a,b,c) and (o', ¥, ).

If all mass of the probability distribution of (a;,b;, c;) is concentrated at one
point (a,b,c), then of course we have a tridiagonal matrix with constant diago-
nals. This is a particular case of Toplitz matrices. The eigenvalue distribution
of non-Hermitian T6plitz matrices was extensively studied in the past; see, e.g.,
survey [22].

Our main result expresses the limiting distribution of the eigenvalues of J, in
terms of the (upper) Lyapunov exponent

12 = lim = logllfasr () + | fu()]?]

of equation (1.1). It is well known that (for every complex z) the above limit
exists with probability one and is nonrandom. This follows from Oseledec’s
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multiplicative ergodic theorem [18]. A more subtle fact is that in our case v(z)
can be calculated using the well known Furstenberg formula [7], and moreover,

1
(1.8) ¥(z) = lim —Elog||S.(2)||, z€C.
n—o0o 1
The function (z) is subharmonic in the entire complex plane [4] and bounded
from below,
1
(1.9) v(z) > §Elog|a1/c1| for all 2.

This inequality easily follows from det S,,(2) = []’_; aj/c;. The subharmonicity
implies that Ay, where A is the distributional Laplacian in variables Re z and
Im z, defines a measure on C; see, e.g., [17]. Our main result is as follows.

THEOREM 1.1: Let u, be the normalized eigenvalue counting measure of J,,,
ie., pp = %Z?:l 0,,, where z1,. .., z, are the eigenvalues of J,. Then:

(a) With probability one, p,, converges weakly to = 5-Avy as n — co.

(b) (Thouless formula) For every z € C,

(1.10) ¥(z) = /Clog |lw — z|dp(w) — Elog|ey|.

(¢c) The limiting eigenvalue counting measure p is log-Holder continuous.
More precisely, for any B,,5 = {2 : |z — 20| <6}, 0<6 <1,

C(;’o,(s)

1.11 B, <
( ) /‘L( 0,5)_ log%

¥

where C(z9,6) > 0 as é — 0.

We deduce Theorem 1.1 from Theorem 1.2 which is of independent interest
in the context of second order difference equations.

THEOREM 1.2: With probability one,

!
(1.12) lim —log|fnt1(2)| = 7(2)
n—oo N
for almost all z with respect to Lebesgue measure on C.

In the real case, i.e., when the sequences a;, b; and c; are real and the
spectral parameter z is real, Theorem 1.2 can be deduced from the Law of
Large Numbers for the coefficients of the product of random matrices which
was proved in [12]. Our proof of Theorem 1.2 is different from the one given in
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[12]. It is well adapted to our (complex valued) case, very short and makes our
paper self-contained.

In the Hermitian case, (1.12) and the Thouless formula (1.10) follow directly
from the fact that p, converges weakly to a limiting measure p [1, 6] and the
latter can be established without use of products of random matrices and by
more elementary means. We would like to emphasize that in the non-Hermitian
case we follow the opposite direction route: the weak convergence of u, and
the Thouless formula are deduced from (1.12). To this end we make use of the
relation

1
(1.13) Hn = 2—A10g]fn+1|7
™

where the equality is to be understood in the sense of distribution theory. Rela-
tion (1.13) is well known in function theory. It holds for an arbitrary polynomial
of degree n and can be easily derived with the help of the Gauss—Green formula.
In this general setup it was shown by Widom [21, 22] that if the measures pu,
for all n are supported inside a bounded region and in the limit n — oo the
function p,(z) = [ log|z — w|dun(w) converges to a limiting function p(z) al-
most everywhere in the complex plane, then u,, converges weakly to p = %Ap‘
We shall need the following simple extension of this result to the case when the
supports of i, are not necessarily bounded.

Let A, be a (deterministic) sequence of square matrices of increasing
dimension n, and

1
pa(2) =~ log | det(Ay — 21,)| = /C log | — 2|dun (),

where I, is the n x n identity matrix and u, = %Apn is the normalized
eigenvalue counting measure of A,,. Define
(1.14) TR = limsup/ log |w|dpn(w), R>1.

n—00 {lw|>R

PROPOSITION 1.3: Assume that there is a function p: C — [~o0, +00) such
that p,(z) = p(z) as n — oo almost everywhere in C. If ;1 < +oo then it
follows that p is locally integrable, p = %Ap is a unit mass measure,

(1.15) / log |w|du(w) < 7 < +o0,
fw|>1

and the sequence of measures p, converges weakly to u as n — oco. If, in
addition, limg ., TR = 0 then we also have that

{1.16) p(z) = /Clog lw — zjdu(w).
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Remark: In view of (1.15), the integral on the RHS in (1.16) is a locally inte-
grable function of z taking values in [—00, +00).

For the sake of completeness, we give a proof of this Proposition in
Appendix A.

In order to estimate the tails of eigenvalue distributions as required in the
above Proposition 1.3, we use the following inequalities?:

(1.17) 7 < hmsup—z—logdet(l + ARAY),

n—+oo

and for any R > 1 and ¢ > 0,

(1.18) TR < ITlimsup

og R n—00

§
CTE trlog' tO(I, + A, AL).
These inequalities can be derived with the help of Weyl’s Majorant Theorem;
for details of the derivation, see Appendix B.
Let us now return to the random Jacobi matrices J,. Straightforward but
tedious calculations show® that

trlong(I + JnJy) Zlog1+5 +Bv;|?), where v; = (aj,bj,¢;),

for some a, 8 > 0 independent of v;’s and n. Therefore, if the random sequence
v; is stationary and

(1.19) Elog'™[1 + |v1)?] < 00 for some & > 0,

then the Ergodic Theorem asserts that with probability one the limits in (1.17),
(1.18) are finite which implies 71 < oo and limg o, 7R = 0, as required in
Proposition 1.3. The assumptions of stationarity and (1.19) are less restrictive
than assumptions A1-A3. However, we are only able to prove Theorem 1.2
(which is the main ingredient in our proof of Theorem 1.1) under these more
restrictive assumptions.

2 Note that log det(I, + A, A}) = trlog(In + AnA}).

3 For any Hermitian matrix H = ||Hjx||} x=; we have H < D = diag(d, ..., ds)
with d; = >, |Hjk), j = 1,...,n. Therefore, if f is a nondecreasing func-
tion then, by the Courant-Fisher minimax principle, trlog f(H) < tr f(D) =

Z;=1 f(d;).
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2. Products of random matrices

Our proof of Theorem 1.2 makes use of several facts from the theory of products
of random 2 x 2 matrices. We list these facts below (Propositions 2.1-2.3).

Let v be a probability distribution on the group GI(2, C) of invertible complex
2 x 2 matrices and g be an infinite sequence of independent samples from this
distribution.

As before, S;, = g5,+...-g1 forn = 1,2,.... By P(C?) we denote the projective
space on which every non-degenerate matrix g acts in a natural way. Let « be
a probability measure on P(C?). We say that g preserves « if k(g~.B) = k(B)
for any Borel set B (here g.z is the result of the action of g on x € P(C?)). By
G, we denote the closure of the subgroup of GI(2,C) generated by all matrices
belonging to the support of ». We say that GG, preserves x if x is preserved by
every g € G,,.

PROPOSITION 2.1: Let A > A{™ be the singular values of S,. If
(2.1) Elog||g|| and Elog|det g| are both finite,

then with probability one the following limits

oL e _
(22) nlLH;Q E 10g /\] - 7]7 J= 17 27
exist and are nonrandom.
The limiting values v; and - are called the Lyapunov exponents of the
sequence S;,.

PRroPoSITION 2.2: If, in addition to condition (2.1), no measure k is preserved
by G,, then the Lyapunov exponents of the sequence S, are distinct, i.e.,
M > 2.

PROPOSITION 2.3: If condition (2.1) is satisfied and no measure k is preserved
by G, then:
(i) For any unit vector x the probability is one that

.1
(2.3) lim —log||Spz|| =m.
n—o0 1N

(ii) Ifin addition E(||g]|° +||g71||%) < oo for some & > 0, then for any positive
€ there is a constant p(¢) > 0 such that uniformly in z, ||z|| = 1,

(2.4) Prob(|log ||Spz|| — ny1| > en|) < e,
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Remarks: 1. As all norms in C? are equivalent, the choice of norm in (2.3)
and (2.4) is not important. However, it is convenient to deal with the standard
Euclidian norm.

2. Propositions 2.1-2.3 are well known in the classical case of the real matrices;
see, e.g., [18, 2] for proofs of Propositions 2.1 and 2.3 and [7, 20] for proofs of
Proposition 2.2. For complex matrices, Propositions 2.1 and 2.3 are proved in
the same way as in {18, 2]. However, the proof of Proposition 2.2 is somewhat
different from that given in [7, 20]. We shall now discuss the necessary changes
which would allow the interested reader to reconstruct the proof in question
simply by examining the one in [20]. Namely, the main ingredient of this proof
is the fact that the mapping g — T, where

(Te @) = flg™ o)llg™ =2,

defines a unitary representation of the group SL(m,R) in Hilbert space
Lo(S,,,dl) with dl being the natural Lebesgue measure on the unit sphere
Sm € R™. (Obviously, we are interested in the case when m = 2.)

In the case of the complex space the representation is defined by

(Tyf)() = flg™ )l all™™,

in Hilbert space Ly(Sy,,dl) with dl being again the natural Lebesgue measure
on the unit sphere S,,, € C™. After that the proof proceeds in the way suggested
in [20].

3. Proofs of Theorems 1.1 and 1.2

In order to be able to apply Propositions 2.1-2.3, we have to verify that under
assumptions A1-A3 our matrices g; defined in (1.2) satisfy the conditions of
these Propositions.

It is apparent that assumption A2 guarantees that condition (2.1) is satisfied
and E(||g|/® + |lg71|°) < oco. It remains to check that assumption A3 implies
that no measure & is preserved by G, (here v is the measure induced on the
group of matrices by the distribution of (a3, b1,¢1)). To this end we note that if

z= —a , z=b  —a
f— c C — ! r
9= ( 1 0 ) and g ( 1 0 )
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It remains to check that for almost all = the group G generated by the matrices
g, ¢’ is rich enough in the sense that no measure is preserved by all matrices
of this group. The main idea is as follows. For a “typical” z we construct two
matrices, say B and D, from G such that the eigenvalues of B are of different
moduli. It is easy to see then that the only measure preserved by all matrices
of the form B", —co < n < oo is the one supported by the lines in P(C?)
generated by the eigenvectors of B. The matrix D € G is then chosen so that
its action on P(C?) does not preserve these lines, which means that the measure
in question does not exist. We would like to emphasize that the presence of the
parameter z plays a crucial role in this situation.
More precisely, if z is such that

2 arg(z — b) # arg(ac),

then the matrix g has eigenvalues with different moduli. In other words, the
moduli are different if z does not belong to a certain half line. The ¢’ then plays
the role of D {once again when z lies outside of certain curves). This statement
can be checked by direct calculation and is sufficient for our purposes.

However, in some important cases much more precise statements can be made.
In particular, if ¢'a/a’c = 1 then each of triangular matrices (gg’ ! and ¢y
is non-trivial for all but maybe two values of z and a similar idea applies; see
[2] page 213.

Now we are in a position to apply Propositions 2.1-2.3. For any two non-zero
vectors z and y, define

@k
(z,2)(y,y)’
where (-,-) is the scalar product in C2. The function d(z,y) is the natural
angular distance between z and y on the projective space P(C?).
The following Lemma is the key element in the proof of Theorem 1.2. (In this
Lemma and thereafter the abbreviation a.s. refers to the probability measure,
i.e., any equality with the letters a.s. above it holds with probability one.)

d(r,y) =

LEMMA 3.1: Suppose that the conditions of Propositions 2.1-2.3 are satisfied.
If y,, is a sequence of random unit vectors in C* such that

(3.1) [Snynll = e™2T¢  where €, 0(n) as n — oo,

then for any fixed unit vector x and any § > 0 there is a constant r(x,8) > 0
such that

(3.2) P’I”Ob{d(;l,‘,yn) < e—né} < e~ nr(@,0)
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for all sufficiently large n.

Proof: For any n, one can always find two orthogonal unit vectors u, and v,
such that S} Sp,u, = /\5”’ and S} Spv, = /\(2n). In view of Proposition 2.1,
|Sntin|] = €% and  |[Spvn|| = €2, where €, €/ 0(n).

n

Obviously, the sequence v,, satisfies condition (3.1) and we first prove the large
deviation estimate (3.2) for this sequence.

Let z be a fixed unit vector. Then z = (x, uy )uy, + (x, v,)v, for every n, and,
since |(z,u,)| = d(z,v,) and |(z,v,)] < 1, we have that

[1Snz|l < d(@,ve)|[Sntinl| + {|Snvnl]-
Therefore, if d(z,v,) < e~ then
log ||Spzl] < nyy + log(e ™t en 4 g~y
and hence with probability one,
log||Snzl| = ny1 < —nmin(d, 1 — ¥2) + o(n).
It follows now from Proposition 2.3 that
(3.3) Prob{d(z,v,) < e ™} < e~m(@:8)

for some 7(x, 8) and all n > ng, where ny depends on the matrices Sy, and also
on x and 4.

Now, let y, be an arbitrary sequence of random unit vectors satisfying con-
dition (3.1), and let y;- be a sequence of unit vectors orthogonal to y,, ie.,
(Yn,y) = 0 for all n. Obviously, d(us,yr) = |(un,yn)| and, since S;Spu, =
ety we have that with probability one,

d(un,yf;) = e—2n71+o(n)|(snum Spyn)| < e nm—rz)to(n)

It is then apparent that d{(v,,y,) is also exponentially small for large n and
therefore the large deviation estimate (3.2) for y,, follows from (3.3). |

Proof of Theorem 1.2: Let

(%) wt 1= (5O, mna
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Then ) )
YR 10010 g 191
TAE LEATAC AL
and therefore
(3.4) L 10g | fusr ()] = = log d(z, yn) + = log [yl
n n n

In view of (1.3) and Proposition 2.3(i),

. 1 a.s.
(3:9) Jim —log lyal| = (2),

where -y(2) is the upper Lyapunov exponent of the sequence of transfer matrices
Sn(2). On the other hand, S;1(2)y, = (1,0)T, and therefore
1 S
lim —lOg ” n (Z)yn”a:s _ 71(’2)‘
n—oo 7l llyall
1t follows now from Lemma 3.1 (applied to the matrices S, !(z) and the vectors
z and yn/||ynl|*) and the Borel-Cantelli Lemma that

1
lim ~logd(z,y,)=0.

n—oo N

Therefore, in view of (3.4) and (3.5), for any fixed z the probability is one that

(56) Jim 2 og s (2)] = ).

But then the probability is one that (3.6) holds almost everywhere in the
complex plane. This follows from the Fubini Theorem. Our proof of
Theorem 1.2 is complete.

Proof of Theorem 1.1: As explained in the Introduction, under assumptions
A1-A3, the probability is one that 71 < C for some non-random C < +oo and
limp_00 TR = 0. Therefore, parts (a) and (b) of Theorem 1.1 follow immediately
from Theorem 1.2 by the way of Proposition 1.3.

The log-Holder continuity of p is a corollary of the Thouless formula and the
fact that the Lyapunov exponent 7(z) is bounded from below. This is done very
much in the same way as in the Hermitian case; see [4]. The stronger property
of Holder continuity of i is well known in the Hermitian case (see [3] for detailed

4 If 41 and 7, are the Lyapunov exponents of a sequence S,, then the sequence
S has the Lyapunov exponents —vz and —v;.
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discussion) but it is not our intention to go that far in the non-Hermitian case
in this short communication.

To prove (1.11), we first note that the integral [ log|w — z|du(w) converges
absolutely for every z. Indeed, it follows from (1.15) that

/ log {w — z|du(w) < +o0,
[w—z}21

and this inequality together with the Thouless formula and the lower bound
(1.9) imply that

/ log | — 2| dp(w) < +00
fu-sl<1

as well. Therefore,
(3.7) C(z,6) = / log [w — 2||du(w) — 0 as & = 0,
1<

Obviously, for 6 < 1,

- _ p(Bz,5)
O = [ sl = sdutw) 2 S,

and part (c) of Theorem 1.1 follows. Our proof of Theorem 1.1 is now complete.

A. Appendix

Proof of Proposition 1.3: The local integrability of log|z| and the condition
71 < +oo imply that the functions p,(z) are uniformly integrable on bounded
sets in C. It follows from this that p(z) is locally integrable and p, — p as
n — oo in D'(C), the space of Schwartz distributions in C. Since A is con-
tinuous on distributions, we also have that Ap, — Ap in D'(C). Obviously
Ap > 0, hence Ap is defined by a measure; see, e.g., [16]. As any sequence of
measures converging as distributions must converge weakly, we conclude that
fin = 3=App — p = 5=Ap weakly as measures.
For any R > 1,

1
dpin(w) < —— log |w|du, (w).
/|WIZR pn(w) < log | R| [w]>1 g [wldpn (w)

Therefore the inequality 7 < +o0o implies that the sequence of measures yu, is
tight, and hence cannot lose mass. As each of u, has unit mass, so has the
limiting measure .
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It follows from the weak convergence of p,, to p and (1.14) that

/ log |w|dp(w) < lim log |w|dpn(w) <7
1<|w|<R

70 J1<|w|<2R

for any R > 1. This implies (1.15). Similarly, if limg_,co TR = 0 then

(A1) lim log |w|du(w) = 0.

It remains to prove relation (1.16). It will suffice to show that
(A.2) Pn — / log|w — -|du{w) in D'(C)
c

when n — co. Let ¢(z) be a continuous function with bounded support. Then

/ Pul(2)b()d 7 = / 9(w)djin (w)
C C

with
gw) = [ (o) loglw -zl
C

The function g is continuous and g(w) = O(log|w|) when |w| — oco. Assume
now that limg_,oo 7r = 0. Then

lim limsup/ lg(w)|dpn (w) = 0,
lwi>R

R—00 nooo

and

lim g(w)|dp(w) =0
dm [ loClda(e)

because of (A.1). It now follows from the weak convergence of u, to u that

lim | gw)dpn(w) = /C 9(w)du(w).

n—o0 C

Therefore

Jim [ vtz = [ widutu) = [ { [ 1ogho - sldute) pwierar,

and (A.2) follows.
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B. Appendix

Derivation of inequalities (1.17) and (1.18): Let z1,...,2z, and s;,...,8,
be respectively the eigenvalues and singular values of A, labeled so that

|21] > |22] > -+ > |2n| and 81 > 82 > -+ > s,. Weyl’s Majorant Theorem, see
[9], page 39, asserts that

ZF(lzJ| gi =1,2,...,n,

for any function F(t) (0 <t < o) such that F(e®) is convex on R. Obviously,
the function log**’ (¢ t) satisfies this requirement for § > 0, and therefore

1 1
[ tog ™ wldunu) = | Y 10g™ 15l < 1 3 1ot I
[w]>1 n n

{23121 {23121
1Qmy 144
n Zlog
Jj=1
where m is the number of eigenvalues of A, such that |z;| > 1. Obviously,
Zlogsj 21+6 Elog1+5(s )< —= 21+5 Zlog1+5(1 +57)

trlog1+"(1 + AR AY),

IA

21+6

and therefore
| / log!*? |w|dpn, (w) < 1 ——trlog* (I, + A, A%), §>0,
Jul21 2
which implies (1.17) and (1.18).
References
[1} J. Avron and B. Simon, Almost periodic Schrédinger operators II. The integrated

density of states, Duke Mathematical Journal 50 (1983), 369-391.

[2] P. Bougerol and J. Lacroix, Products of random matrices with applications to
Schrédinger operators, Progress in Probability and Statistics, Vol. 8, Birkhauser,
Boston—-Basel-Stuttgart, 1985.

[3] R. Carmona and J. Lacroix, Spectral Theory of Random Schrédinger Operators,
Birkhauser, Boston, 1990.



Vol. 148, 2005 RANDOM NON-HERMITIAN JACOBI MATRICES 345

(4]

[5]

(6]

[7]
(8]
[9]

(10]

[11]

[12]

(13]
[14]

[15]

[16]

[17]
(18]

[19]

W. Craig and B. Simon, Subharmonicity of the Lyapunov Index, Duke Mathe-
matical Journal 50 (1983), 551-560.

B. Derrida, J. L. Jacobsen and R. Zeitak, Lyapunov exponent and density of states
of a one-dimensional non-Hermitian Schrodinger equation, Journal of Statistical
Physics 98 (2000), 31-55.

A. L. Figotin and L. A. Pastur, The positivity of the Lyapunov exponent and
the absence of the absolutely continuous spectrum for almost-Mathieu equation,
Journal of Mathematical Physics 25 (1984), 774-777.

H. Furstenberg, Noncommuting random products, Transactions of the American
Mathematical Society 108 (1963), 377-428.

H. Furstenberg and H. Kesten, Products of random matrices, Annals of Mathe-
matical Statistics 31 (1960), 457-469.

I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonself-
adjoint Operators, American Mathematical Society, Providence, RI, 1969.

I. Ya. Goldsheid and B. A. Khoruzhenko, Eigenvalue curves of asymmetric
tridiagonal random matrices, Electronic Journal of Probability 5 (2000),
Paper 16, 26 pp.

I. Ya. Goldsheid and B. A. Khoruzhenko, Regular spacings of complex eigen-
values in the one-dimensional non-Hermitian Anderson model, Communications
in Mathematical Physics 238 (2003), 505-524.

Y. Guivarc’h and, A. Raugi, Frontiére de Furstenberg, propriétés de contrac-
tion et théorémes de convergence, Zeitschrift fiir Wahrscheinlichkeitstheorie und
Verwandte Gebiete 69 (1985), 187-242.

N. Hatano and D. R. Nelson, Localization transitions in non-Hermitian quantum
mechanics, Physical Review Letters 77 (1996), 570-573.

N. Hatano and D. R. Nelson, Vortex pinning and non-Hermitian quantum

mechanics, Physical Review B56 (1997), 8651-8673.

D. E. Holz, H. Orland and A. Zee, On the remarkable spectrum of a non-
Hermitian random matrix model, Journal of Physics. A. Mathematical and
General 36 (2003), 3385-3400.

L. Hormander, The Analysis of Linear Partial Differential Equations, Vol. I,
Springer, Berlin, 1983.

L. Hérmander, Notions of Convexity, Birkhauser, Boston, 1994.

V. L. Oseledec, A multiplicative ergodic theorem. Lyapunov characteristic

numbers for dynamical systems, Transactions of the Moscow Mathematical
Society 19 (1968), 197-221.

L. A. Pastur and A. L. Figotin, Spectra of Random and Almost-periodic
Operators, Springer, Berlin-Heidelberg-New York, 1992.



346 I. YA. GOLDSHEID AND B. A. KHORUZHENKO Isr. J. Math.

[20] A. D. Virtser, On products of random matrices and operators (English), Theory
of Probability and its Applications 24 (1980), 367-377.

[21] H. Widom, Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the
asymptotics of the Toeplitz determinants in the case of nonvanishing index,
Operator Theory: Advances and Applications 48 (1990), 387-421.

[22] H. Widom, Eigenvalue distribution for nonselfadjoint Toeplitz matrices, Operator
Theory: Advances and Applications 71 (1994), 1-8.



